Solutions to Question Sheet 1, Limits I.

1. When verifying the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=L$ you need to know the value of the limit, L, in advance. This question is about finding L. Without detailed proofs evaluate the following limits.
i) $\lim _{x \rightarrow 1} \frac{x^{2}-x-2}{x+1}$
ii) $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}$
iii) $\lim _{x \rightarrow 1}\left\{\frac{1}{x-1}-\frac{2}{x^{2}-1}\right\}$
iv) $\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}$.
v) $\lim _{x \rightarrow 2} \frac{\frac{1}{2}-\frac{1}{2}}{x-2}$.
vi) $\lim _{t \rightarrow 8} \frac{8-t}{2-\sqrt[3]{t}}$.

Hint: In part (iv) use the important identity

$$
a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})
$$

for all $a, b \geq 0$. This follows from the "difference of squares" formula

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

with $a=x^{2}$ and $b=y^{2}$.
For part (vi) use a similar result based on

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) .
$$

Solution i)

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x-2}{x+1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-2)}{x+1}=\lim _{x \rightarrow 1}(x-2)=-1
$$

ii)

$$
\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x-2)}{x+1}=\lim _{x \rightarrow-1}(x-2)=-3
$$

iii) Use partial fractions to write

$$
\frac{2}{x^{2}-1}=\frac{1}{x-1}-\frac{1}{x+1} .
$$

Then

$$
\lim _{x \rightarrow 1}\left\{\frac{1}{x-1}-\frac{2}{x^{2}-1}\right\}=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}
$$

iv) Use the Hint to write $9-t=(3-\sqrt{t})(3+\sqrt{t})$. Then

$$
\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}=\lim _{t \rightarrow 9} \frac{(3-\sqrt{t})(3+\sqrt{t})}{3-\sqrt{t}}=\lim _{t \rightarrow 9}(3+\sqrt{t})=6 .
$$

v) For all $x \neq 2$ we have

$$
\frac{\frac{1}{2}-\frac{1}{2}}{x-2}=\frac{0}{x-2}=0
$$

so

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{2}-\frac{1}{2}}{x-2}=0
$$

vi) Use

$$
a-b=\left(a^{1 / 3}-b^{1 / 3}\right)\left(a^{2 / 3}+a^{1 / 3} b^{1 / 3}+b^{2 / 3}\right)
$$

with $a=8$ and $b=t$ to get

$$
\lim _{t \rightarrow 8} \frac{8-t}{2-\sqrt[3]{t}}=\lim _{t \rightarrow 8}\left(4+2 t^{1 / 3}+t^{2 / 3}\right)=12 .
$$

2. Consider the following Rough Work when trying to verify the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow 2} x^{2}=4$.
Assume $0<|x-2|<\delta$. Consider

$$
|f(x)-L|=\left|x^{2}-4\right|=|(x-2)(x+2)|<\delta|x+2| .
$$

Assume $\delta \leq 1$ so $0<|x-2|<\delta \leq 1$, i.e. $-1<x-2<1$ and thus $3<x+2<5$. For then

$$
\left|x^{2}-4\right|<\delta|x+2|<5 \delta,
$$

which we want $\leq \varepsilon$. Hence choose $\delta=\min (1, \varepsilon / 5)$.
Question What do we get for δ if we replace the requirement $\delta \leq 1$ by

$$
\text { i) } \delta \leq 100 \text { or ii) } \delta \leq 1 / 100 ?
$$

Solution i) If $\delta \leq 100$ then $0<|x-2|<\delta \leq 100$. This implies $|x+2| \leq 104$ and so the choice of δ could be

$$
\delta=\min \left(100, \frac{\varepsilon}{104}\right)
$$

ii) If $\delta \leq 1 / 100$ then $0<|x-2|<\delta \leq 1 / 100$. This implies $|x+2| \leq$ $401 / 100$ and so the choice of δ could be

$$
\delta=\min \left(\frac{1}{100}, \frac{100}{401} \varepsilon\right)
$$

Limits of Cubic Polynomials

In the next four questions we look at limits of cubic polynomials. There are so many questions because I want to highlight different aspects of the quadratic polynomial which arises.
3. i) Factorise $x^{3}-8$ into a linear and a quadratic factor.
ii) Bound, from above,

$$
\left|x^{2}+2 x+4\right|
$$

on the interval $1<x<3$.
iii) Show that the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} x^{3}=8
$$

is satisfied if we choose $\delta=\min (1, \varepsilon / 19)$ given $\varepsilon>0$.
Solution i) You should recognise $x^{3}-8=x^{3}-2^{3}$ from the Hint in Question 1. From there we get the factorization

$$
x^{3}-8=(x-2)\left(x^{2}+2 x+4\right) .
$$

ii) On $1<x<3$ we have $1<x^{2}<9$ and so

$$
7=1+2+4<x^{2}+2 x+4<9+6+4=19
$$

in which case $\left|x^{2}+2 x+4\right|<19$.
iii) Let $\varepsilon>0$ be given. Choose $\delta=\min (1, \varepsilon / 19)$. This means both $\delta \leq 1$ and $\delta \leq \varepsilon / 19$. Assume $0<|x-2|<\delta$, then

$$
\begin{aligned}
|f(x)-L| & =\left|x^{3}-8\right| \\
& =|x-2|\left|x^{2}+2 x+4\right| \\
& <\delta 19 \text { using }|x-2|<\delta \text { and part ii, } \\
& <\left(\frac{\varepsilon}{19}\right) 19=\varepsilon
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition of limit.
4. Given $\varepsilon>0$ find a $\delta>0$ that verifies the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 3} x^{3}=27
$$

Solution This time

$$
f(x)-L=x^{3}-27=(x-3)\left(x^{2}+3 x+9\right) .
$$

If $\delta \leq 1$ then $0<|x-3|<\delta \leq 1$ which opens out as $2<x<4$. For such x, we have $4<x^{2}<16$. Thus

$$
19=4+6+9<x^{2}+3 x+9<16+12+9=37 .
$$

Hence $\left|x^{2}+3 x+9\right|<37$ and we can choose $\delta=\min (1, \varepsilon / 37)$.
5. i) Factorise $x^{3}-6 x-4$.
ii) Bound, from above, $\left|x^{2}-2 x-2\right|$ on the interval $|x+2|<1$.
iii) Verify the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow-2}\left(x^{3}-6 x-2\right)=2
$$

i.e. given $\varepsilon>0$ find a $\delta>0$ for which the definition is satisfied.

Solution i) Test small integers x to find a root of $x^{3}-6 x-4$. We find $x=-2$ is a root, so $x+2$ is a factor. Then, for example by equating coefficients in

$$
x^{3}-6 x-4=(x+2)\left(a x^{2}+b x+c\right),
$$

we find that

$$
x^{3}-6 x-4=(x+2)\left(x^{2}-2 x-2\right) .
$$

ii) The interval $|x+2|<1$ is $-3<x<-1$.

Careful! Without thinking you might assume that a quadratic with positive leading term attains it's maximum value at the right hand end of an interval, which it does in Questions 3 and 4. But in the present case the quadratic $x^{2}-2 x-2$ equals 13 at $x=-3$, and -2 at $x=0$. So the maximum is not at the right hand end of the interval.

But, we only require an upper bound on $\left|x^{2}-2 x-2\right|$, not the best. A recommended method is to use the triangle inequality

$$
\left|x^{2}-2 x-2\right| \leq\left|x^{2}\right|+|-2 x|+|-2|=|x|^{2}+2|x|+2 .
$$

Also $-3<x<-1$ implies $|x|<3$, which together gives

$$
\left|x^{2}-2 x-2\right|<3^{2}+2 \times 3+2=17 .
$$

iii) Let $\varepsilon>0$ be given. Choose $\delta=\min (1, \varepsilon / 17)$. Assume that $0<$ $|x+2|<\delta$. Then

$$
\begin{aligned}
|f(x)-L| & =\left|\left(x^{3}-6 x-2\right)-2\right| \\
& =\left|x^{3}-6 x-4\right| \\
& =\left|(x+2)\left(x^{2}-2 x-2\right)\right| \\
& <\delta\left|x^{2}-2 x-2\right| \\
& \leq 17 \delta
\end{aligned}
$$

by the argument above, allowable since $|x+2|<\delta \leq 1$. Next using $\delta \leq \varepsilon / 17$ gives

$$
\left|x^{3}-6 x-4\right| \leq 17(\varepsilon / 17)=\varepsilon,
$$

as required to verify the $\varepsilon-\delta$ definition.

Note If we had been asked to find the least upper bound of $\left|x^{2}-2 x-2\right|$ on $-3<x<-1$ we might start by completing the square

$$
x^{2}-2 x-2=(x-1)^{2}-3 .
$$

Then

$$
\begin{aligned}
-3<x<-1 & \Longrightarrow-4<x-1<-2 \\
& \Longrightarrow 4<(x-1)^{2}<16 \\
& \Longrightarrow 1<(x-1)^{2}-3<13 \\
& \Longrightarrow\left|(x-1)^{2}-3\right|<13
\end{aligned}
$$

Thus 13 is the smallest upper bound. The $\varepsilon-\delta$ definition of limit would then be verified with $\delta=\min (1, \varepsilon / 13)$.

Graphically, $x^{2}-2 x-2$ on $[-3,-1]$ is

End of Note.

6. i) Factorise $x^{3}-4 x^{2}+4 x-1$.
ii) Bound from above $\left|x^{2}-3 x+1\right|$ on the interval $0<|x-1|<1$.
iii) Verify the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 1}\left(x^{3}-4 x^{2}+4 x+1\right)=2
$$

i.e. given $\varepsilon>0$ find a $\delta>0$ for which the definition is satisfied.

Solution i) A search through small integers will quickly find the root $x=1$. There is thus a factor of $x-1$ and, by equating coefficients,

$$
x^{3}-4 x^{2}+4 x-1=(x-1)\left(x^{2}-3 x+1\right) .
$$

ii) The last question showed that a quadratic with positive leading term might not be maximal at the right hand end of an interval. In question 5 the maximum was attained at the left hand end. In the present example, on the interval $0<|x-1|<1$, i.e. $0<x<2$ the quadratic factor $\left|x^{2}-3 x+1\right|$ is not maximal at either end point. But again we simply use the triangle inequality

$$
\left|x^{2}-3 x+1\right| \leq|x|^{2}+3|x|+1<2^{2}+3 \times 2+1=11
$$

Thus the $\varepsilon-\delta$ definition of limit is verified on the choice of $\delta=\min (1, \varepsilon / 11)$.
iii) Let $\varepsilon>0$ be given. Choose $\delta=\min (1, \varepsilon / 11)$. Assume that $0<$ $|x-1|<\delta$. Then

$$
\begin{aligned}
|f(x)-L| & =\left|\left(x^{3}-4 x^{2}+4 x+1\right)-2\right| \\
& =\left|x^{3}-4 x^{2}+4 x-1\right| \\
& =\left|(x-1)\left(x^{2}-3 x+1\right)\right| \\
& <\delta\left|x^{2}-3 x+1\right| \\
& \leq 11 \delta,
\end{aligned}
$$

by the argument above, allowable since $|x-1|<\delta \leq 1$. Next using $\delta \leq 4 \varepsilon / 5$ gives

$$
\left|x^{3}-6 x-4\right| \leq 11(\varepsilon / 11)=\varepsilon,
$$

as required to verify the $\varepsilon-\delta$ definition.
Note The upper bound of 11 on the quadratic factor is quite poor. The alternative method is to complete the squares so

$$
x^{2}-3 x+1=\left(x-\frac{3}{2}\right)^{2}-\frac{5}{4} .
$$

Then

$$
\begin{aligned}
0<x<2 & \Longrightarrow-\frac{3}{2}<x-\frac{3}{2}<\frac{1}{2} \\
& \Longrightarrow 0 \leq\left(x-\frac{3}{2}\right)^{2}<\frac{9}{4} \\
& \Longrightarrow-\frac{5}{4} \leq\left(x-\frac{3}{2}\right)^{2}-\frac{5}{4}<1 \\
& \Longrightarrow\left|\left(x-\frac{3}{2}\right)^{2}-\frac{5}{4}\right| \leq \frac{5}{4},
\end{aligned}
$$

with equality at $x=3 / 2$. Thus the maximum occurs at the turning point of the quadratic. Make sure you understand each implication in this chain. This much improved bound would allow us to choose $\delta=\min (1,4 \varepsilon / 5)$.

Graphically, $x^{2}-3 x+1$ on $[0,2]$ is

End of Note.

Limits of Rational Functions

In the next two questions we take a result $\lim _{x \rightarrow a} f(x)=L$ and examine

$$
\lim _{x \rightarrow a} \frac{f(x)-L}{x-a},
$$

for this gives examples of limits of rational functions which are not defined at the limit point.
7. (Based on Question 3.iii). i) Calculate, without proof,

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}
$$

ii) Fully factorise the polynomial

$$
x^{3}-12 x+16
$$

iii) Prove the value found in Part i is correct by verifying the $\varepsilon-\delta$ definition of limit.

Solution i) Recall $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$ which leads to

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2}=\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)=12,
$$

without justification.
ii) A small integer root of $x=2$ is quickly found which leads to

$$
\begin{aligned}
x^{3}-12 x+16 & =(x-2)\left(x^{2}+2 x-8\right) \\
& =(x-2)^{2}(x+4) .
\end{aligned}
$$

iii) To verify the $\varepsilon-\delta$ definition consider

$$
\begin{aligned}
|f(x)-L| & =\left|\frac{x^{3}-8}{x-2}-12\right| \\
& =\left|\frac{x^{3}-12 x+16}{x-2}\right| \\
& =\left|\frac{(x-2)^{2}(x+4)}{x-2}\right| \quad \text { by part ii, } \\
& =|x-2||x+4| .
\end{aligned}
$$

Let $\varepsilon>0$ be given. Choose $\delta=\min (1, \varepsilon / 7)$. This means both $\delta \leq 1$ and $\delta \leq \varepsilon / 7$. Assume $0<|x-2|<\delta \leq 1$ which implies $1<x<3$ in which case $|x+4|<7$. Then

$$
\begin{aligned}
|f(x)-L| & =|x-2||x+4| \\
& <\delta 7 \leq\left(\frac{\varepsilon}{7}\right) 7 \\
& =\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=12 .
$$

8. (Based on Question 5.) i) What is the value of

$$
\lim _{x \rightarrow-2} \frac{x^{3}-6 x-4}{x+2} ?
$$

ii) Prove your result by verifying the $\varepsilon-\delta$ definition of this limit.

Solution i) We have already discovered in Question 5 that

$$
x^{3}-6 x-4=(x+2)\left(x^{2}-2 x-2\right) .
$$

So

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{3}-6 x-4}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x-2\right)}{x+2} \\
& =\lim _{x \rightarrow-2}\left(x^{2}-2 x-2\right)=6
\end{aligned}
$$

without justification.
ii) Let $\varepsilon>0$ be given. Choose $\delta=\min (1, \varepsilon / 7)$. This means both $\delta \leq 1$ and $\delta \leq \varepsilon / 7$.

Assume $0<|x-(-2)|<\delta \leq 1$ which implies $-3<x<-1$. Subtracting 4 throughout gives $-7<x-4<-5$ which implies $|x-4|<7$.

Then

$$
\begin{aligned}
|f(x)-L| & =\left|\frac{x^{3}-6 x-4}{x+2}-6\right| \\
& =\left|\frac{x^{3}-12 x-16}{x+2}\right| \\
& =\left|\frac{(x-4)(x+2)^{2}}{x+2}\right| \quad \text { by part } \mathrm{i}, \\
& =|x-4||x+2| \\
& <7 \delta \text { using }|x+2|<\delta \text { and }|x-4|<7, \\
& \leq 7\left(\frac{\varepsilon}{7}\right)=\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow-2} \frac{x^{3}-6 x-4}{x+2}=6 .
$$

In the previous two questions we have looked at the limits of rational functions at a point where the function is not defined. Now we look at examples where the rational function is well-defined at the limit point.
9. i) Show that

$$
\frac{3}{4}<\frac{x+2}{x+3}<\frac{5}{6}
$$

for $1<x<3$.
ii) Show that the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=2
$$

can be verified by the choice of $\delta=\min (1,6 \varepsilon / 5)$.

Solution i. Since $x>1$ we have $x+3>0$ and we can multiply up without changing the direction of any inequality. Thus

$$
\begin{aligned}
\frac{3}{4}<\frac{x+2}{x+3}<\frac{5}{6} & \Longleftrightarrow 18(x+3)<24(x+2)<20(x+3) \\
& \Longleftrightarrow 6<6 x<2 x+12
\end{aligned}
$$

having subtracted $18 x+48$ from all sides. Then $6<6 x<2 x+12$ iff $1<x$ and $4 x<12$, i.e. $1<x<3$.
ii. Let $\varepsilon>0$ be given. Choose $\delta=\min (1,6 \varepsilon / 5)$. This means both $\delta \leq 1$ and $\delta \leq 6 \varepsilon / 5$.

Assume $0<|x-2|<\delta \leq 1$ which expands as $1<x<3$. For such x we have $|(x+2) /(x+3)|<5 / 6$ by part i. Then

$$
\begin{aligned}
|f(x)-L| & =\left|\frac{x^{2}+2 x+2}{x+3}-2\right|=\left|\frac{x^{2}-4}{x+3}\right|=|x-2|\left|\frac{x+2}{x+3}\right| \\
& <\delta \frac{5}{6} \leq\left(\frac{6}{5} \varepsilon\right) \frac{5}{6}=\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=2 .
$$

10. Evaluate

$$
\lim _{x \rightarrow 2} \frac{x^{2}-2 x-12}{x+2}
$$

and verify the $\varepsilon-\delta$ definition of the limit.
Solution We might guess that the limit is

$$
\lim _{x \rightarrow 2} \frac{x^{2}-2 x-12}{x+2}=\frac{-12}{4}=-3
$$

Let $\varepsilon>0$ be given. Choose $\delta=\min (1,3 \varepsilon / 4)$. This means both $\delta \leq 1$ and $\delta \leq 3 \varepsilon / 4$.

Assume $0<|x-2|<\delta \leq 1$ which implies $1<x<3$. For such x we have

$$
\left|\frac{x+3}{x+2}\right|<\frac{4}{3}
$$

proved by inverting the lower inequality in Part i of the previous question. Then

$$
\begin{aligned}
|f(x)-L| & =\left|\frac{x^{2}-2 x-12}{x+2}-(-3)\right| \\
& =\left|\frac{x^{2}+x-6}{x+2}\right| \\
& \left.=|x-2| \frac{x+3}{x+2} \right\rvert\, \\
& <\delta \frac{4}{3} \leq\left(\frac{3}{4} \varepsilon\right) \frac{4}{3}=\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{2}-2 x-12}{x+2}=-3
$$

Finally

11. Why must any $\delta>0$ used to verify the $\varepsilon-\delta$ definition of the limit of \sqrt{x} as $x \rightarrow 9$ satisfy $\delta \leq 9$?

Given $\varepsilon>0$ find a $\delta>0$ for which the definition of

$$
\lim _{x \rightarrow 9} \sqrt{x}=3
$$

is satisfied.
Hint Use the Hint to Question 1.
Solution To verify $\lim _{x \rightarrow 9} \sqrt{x}=3$ we need look at $x: 0<|x-9|<\delta$, i.e.

$$
9-\delta<x<9+\delta
$$

For \sqrt{x} to be defined we need $x>0$ and thus we require $9-\delta \geq 0$, i.e. $\delta \leq 9$.

Rough Work. The hint given in the question refers to the identity

$$
(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a-b
$$

for non-negative a and b. We use this by multiplying $\sqrt{x}-3$ by 1 in the form

$$
1=\frac{\sqrt{x}+3}{\sqrt{x}+3}
$$

For then

$$
\begin{equation*}
|\sqrt{x}-3|=\left|\frac{(\sqrt{x}+3)}{(\sqrt{x}+3)}(\sqrt{x}-3)\right|=\left|\frac{x-9}{\sqrt{x}+3}\right| . \tag{1}
\end{equation*}
$$

It is possible to demand $\delta \leq 1$ in which case $8<x<10$ and then

$$
\frac{1}{\sqrt{x}+3}<\frac{1}{\sqrt{8}+3}
$$

It would be possible to choose

$$
\delta=\min (1,(\sqrt{8}+3) \varepsilon)
$$

We saw above that we must have $\delta<9$. For this we find $0<x<18$, in which case $1 /(\sqrt{x}+3)<1 / 3$. Then we can choose $\delta=\min (9,3 \varepsilon)$.
My preferred option is $\delta<9$ along with the simple upper bound of $1 /(\sqrt{x}+3)<1$. Then we can choose $\delta=\min (9, \varepsilon)$.
What we see here is an example of the fact that if the $\varepsilon-\delta$ definition is satisfied for an $\varepsilon>0$ then it is satisfied by all $\varepsilon^{\prime}<\varepsilon$.

End of Rough Work.
Solution Let $\varepsilon>0$ be given. Choose $\delta=\min (9, \varepsilon)$. Assume $0<$ $|x-9|<\delta$.
First $0<|x-9|<\delta \leq 9$ implies $x>0$ in which case \sqrt{x} is defined.
Then, using $\sqrt{x}+3 \geq 3>1$, and $\delta \leq \varepsilon$, we have

$$
|f(x)-L|=|\sqrt{x}-3|=\left|\frac{x-9}{\sqrt{x}+3}\right|<\frac{\delta}{1} \leq \varepsilon
$$

as required. Thus we have verified the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow 9} \sqrt{x}=3$.

